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It is a commonly held belief that most complex diseases (e.g., diabetes, asthma, cancer) are affected in part by
interactions between genes and environmental factors. However, investigators conducting genome-wide associ-
ation studies typically test for only the marginal effects of each genetic marker on disease. In this paper, the authors
propose an efficient and easily implemented 2-step analysis of genome-wide association study data aimed at
identifying genes involved in a gene-environment interaction. The procedure complements screening for marginal
genetic effects and thus has the potential to uncover new genetic signals that have not been identified previously.
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Abbreviations: E, environment; G, gene; GWAS, genome-wide association study; OR, odds ratio; SNP, single nucleotide
polymorphism.

Editor’s note: Two invited commentaries on this article
appear on pages 227 and 231, and the authors’ response is
published on page 234.

Many common, complex traits are believed to be a result
of the combined effect of genes, environmental factors, and
their interactions. For example, Ito et al. (1) showed a sig-
nificant interaction between smoking status and the apurinic/
apyrimidinic endonuclease 1 protein coding gene (APE1)
for lung cancer. Stern et al. (2) found smoking status to be
an effect modifier of the association between the XPD codon
751 polymorphism and risk of bladder cancer. Understand-
ing the relation between genetic polymorphisms and envi-
ronmental exposures can help to identify high-risk
subgroups in the population and provide better insight into
pathway mechanisms for complex diseases.

Methods for identifying disease susceptibility genes in-
clude linkage analysis, candidate gene association studies,
and, more recently, the genome-wide association study
(GWAS). It is known that a GWAS can be more powerful
than linkage analysis in detecting genes associated with
modest increases in disease risk (3). Current GWAS meth-

ods are designed to detect main effects, that is, direct asso-
ciations of a single nucleotide polymorphism (SNP) or
clusters of SNPs with disease (4, 5). In the context of com-
plex diseases, scanning for main effects might miss impor-
tant genetic variants specific to subgroups of the population,
as defined by some exposure. In fact, interactions with
opposite effects in 2 different exposure groups (crossing-
interaction) will not show a main effect and therefore will
not be identified by using standard approaches.

Despite the importance of gene-environment interaction
for complex diseases, little work has been done to develop
methods for detecting these types of interactions in the con-
text of a GWAS. In this paper, we focus on identifying
SNPs that demonstrate heterogeneity between subgroups
defined by some environmental exposure. We introduce an
efficient 2-step approach for detecting loci involved in gene-
environment interactions that is performed independently of
any initial scans for main effects. Our method expands on
the traditional test for gene-environment interaction in
a case-control study by incorporating a preliminary screen-
ing step constructed to efficiently use all available informa-
tion in the data. We demonstrate that this 2-step approach is
more powerful than the standard test of interaction across
a wide range of models.
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MATERIALS AND METHODS

Let D be an indicator of disease status, and assume we
have a sample of cases (D ¼ 1) and unrelated controls
(D ¼ 0). Assume that information is available for a binary
environmental exposure, with E as an indicator for exposure.
Further assume that for each individual we have genotyped
M SNPs spanning the genome, with g1, g2, . . . , gM denoting
the genotypes at the M loci. Letting G1, G2, . . . , GM denote
some genetic coding (e.g., additive, dominant) for each ge-
notype, we consider a model for a given SNP of the form

logit PðD ¼ 1j g; eÞ ¼ b0 þ bgGþ beE þ bgeGE: ð1Þ

Under a dominant coding of the genotype, for example,
exp

�
bg
�
¼ ORg is the odds ratio (OR) comparing carriers of

at least 1 risk allele (G ¼ 1) with noncarriers (G ¼ 0)
among those unexposed (E ¼ 0). ExpðbeÞ ¼ ORe is the
odds ratio comparing risk for exposed (E ¼ 1) with that
for unexposed (E ¼ 0) individuals among noncarriers of
the risk allele. Lastly, exp

�
bge

�
¼ ORge is the ratio of the

genetic odds ratios comparing exposed with unexposed sub-
jects, that is, ORgjE¼1

�
ORgjE¼0. If this ratio is equal to 1.0,

or bge ¼ 0, we say that there is no interaction between ge-
notype and the environmental exposure.

In the context of a GWAS, a standard approach to test for
G 3 E interaction would be to perform a 1-df test of
H0 : bge ¼ 0 for each SNP based on the model in equation 1.
We assume that a likelihood ratio test will be used to test
this hypothesis and denote it as the ‘‘1-step’’ test of in-
teraction. A correction for multiple comparisons (e.g.,
Bonferroni, controlling the false discovery rate (6)) is
required to achieve a desired genome-wide type I error.

One might consider using a case-only analysis of diseased
individuals as the sole approach for identifying interactions
in a GWAS. Indeed, the case-only test has been shown to be
more powerful than a case-control analysis for identifying
interactions (7, 8). However, the case-only analysis depends
heavily on an underlying assumption of G-E independence
in the population, which would be untenable across all SNPs
being scanned in a GWAS. If there is an underlying popu-
lation association between genotype and environmental ex-
posure, a case-only analysis will result in an inflated number
of false positives (7, 9).

We propose an alternative 2-step test to scan for interac-
tions that combines the power of the case-only test with the
protection from bias of the case-control test. Our 2-step scan
for interactions consists of the following 2 steps:

1. Step 1, screening test: For each of theM SNPs, we perform
a likelihood ratio test of association between G and E based
on the logistic model logit PðE ¼ 1j gÞ ¼ c0 þ cgG. This
is the standard test that would be applied in a case-only
analysis of G 3 E interaction (7, 9), although, in our con-
text, the test is applied to the combined sample of cases and
controls. The subset ofm SNPs that exceeds a given signif-
icance threshold (i.e., with P < a1) for the test of
H0 : cg ¼ 0 is analyzed in step 2.

2. Step 2, case-control test: The m SNPs that pass step 1 are
assessed in the traditional test of G 3 E interaction, that

is, based on a likelihood ratio test of H0 : bge ¼ 0 derived
from the model in equation 1. Significance at this step is
defined as having a P value less than a/m, where a is the
desired overall type I error rate.

Although step 1 of our procedure is also sensitive to the
assumption of independence between G and E in the pop-
ulation, the step 2 comparison of cases to controls is not.
Therefore, our overall 2-step procedure will provide a valid
test in the presence of population-level association between
genotype and exposure, a claim we will verify by
simulation.

Given the reported power of a case-only analysis applied
to only diseased individuals (7, 9), one may be tempted to
apply step 1 to only diseased individuals, that is, to perform
a true case-only test of interaction in step 1 and use it to
define the subset of m markers to analyze in step 2. How-
ever, this approach produces a correlation between the step 1
and step 2 test statistics and leads to an inflated type I error
rate for the overall procedure. Our screening test of G 3 E
interaction applied to the entire sample of cases and controls
eliminates the correlation between tests in steps 1 and 2
(Appendix 1) and, as we show (Appendix 2) and verify by
simulation, preserves the overall type I error rate.

We performed simulations to study the power achieved by
our 2-step testing framework compared with the traditional
1-step method. For each of 1,000 replicate data sets, we
simulated a sample of 500 cases and 500 controls, each with
genotype information on a large number of markers
(M ¼ 10,000, 25,000, and 50,000). Although larger marker
sets are likely to be used in practice, our chosen set sizes are
sufficient to demonstrate the relative power of our 2-step
method. Markers were assumed to be independent loci dis-
tributed across the genome. For each replicate, a single
marker was chosen to be the true disease susceptibility lo-
cus, with remaining markers assumed to have no association
with disease. We considered a range of minor allele frequen-
cies (qA) for the disease susceptibility locus, including 0.10,
0.20, and 0.30. For the remaining null markers, we simu-
lated a uniform distribution of allele frequencies between
0.05 and 0.30. We also considered a range of values for the
exposure prevalence (pE), including 0.10, 0.25, and 0.50,
and set the population disease prevalence to 0.05. Finally,
we considered a range of possible values for the genetic and
environmental main effects (bgand be, respectively) as well
as for the interaction effect (bge).

As described above, the traditional case-only method of
testing for G3 E interaction is based on the assumption of no
population-level association between the G and E. We ex-
plored the sensitivity of our method to population-level
association between G and E by introducing a parameter
pge, defined to be the probability that a given marker is
associated with the exposure at the population level. With
pge ¼ 0.0, none of the markers was assumed to be associ-
ated with E in the population. It is unlikely that a large
percentage of SNPs will be associated with a given environ-
mental factor, but, for completeness, we considered a wide
range of values—0.01 to 0.95. For each simulated marker,
we randomly decided whether it was associated with E in
the population based on probability pge. For any marker
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chosen to have an association, we generated genotypes con-
ditional on the assigned E and an assumed population
marker–exposure odds ratio of 2.0.

For each parameter setting, we applied the traditional
1-step G 3 E test and our 2-step approach. We estimated
the experiment-wise type I error as the proportion of 1,000
replicates in which at least one of the null markers was
found to be significant after a Bonferroni correction for
multiple comparisons. Power was calculated as the number
of replicates in which the disease susceptibility locus was
detected at an overall significance level of 0.05, again after
a Bonferroni correction for multiple comparisons. We also
computed the proportion of replicates in which the disease
susceptibility locus was among the top 10 or top 25 most
significant SNPs, that is, on a short list that might warrant
additional scrutiny following a genome-wide scan.

RESULTS

Across a range of interaction effect sizes (Rge ¼ exp(bge)),
our 2-step method was more powerful than the standard
1-step test for detecting an interaction (Figure 1). For exam-
ple, when Rge ¼ 3.0, power was 33.2% using a standard
1-step approach compared with 57.9% using our 2-step
method. As we would expect, as the effect size of the in-
teraction increases, both tests gain power. For a small in-
teraction effect, both tests have low power to detect a causal
locus; at a sufficiently large effect size, the 2 tests approach
100% power. The largest differences in power between the
2 methods occurred when the interaction effect was of mod-
erate magnitude, from 2.5 to 4.0. The estimates of power in
Figure 1 all assumed a disease susceptibility locus allele
frequency qA ¼ 0.2, exposure frequency pE ¼ 0.5, no main
effects (Rg ¼ Re ¼ 1), no population-level association
between g and E (pge ¼ 0), 10,000 SNP markers, and a
first-step significance threshold of a1 ¼ 0.05.

For various alternatives to the above parameter settings,
Table 1 shows type I error and power for the 1- and 2-step
methods for detecting G-E interaction, holding the interac-
tion effect size fixed (Rge ¼ 3.0). Both methods approxi-
mated the nominal 0.05 type I error under all scenarios,
even when there was a population-level association (pge 6¼ 0)
between markers and the environmental factor (also refer to
the Web Figure, which is posted on the Journal’s website
(http://aje.oupjournals.org/)). The mean type I error across
all scenarios was slightly smaller for the 2-step test (mean ¼
0.051) than for the conventional 1-step test (mean ¼ 0.056),
indicating that, on average, the 2-step test was slightly more
conservative than the 1-step test. The 2-step test was con-
sistently more powerful than the traditional 1-step case-
control test over a wide variety of parameter settings. As
expected, power for both tests was highest for common
exposures and alleles. The 2-step method was at least twice
as powerful as the 1-step test when the exposure was rare or
when the disease allele was rare, although absolute power in
these situations was low for both procedures. Power for the
2-step test depended somewhat on the significance threshold
for step 1 (a1). Specifically, relative to our base model with
a1 ¼ 0.05, a smaller threshold value (a1 ¼ 0.01) resulted in
increased power to detect the disease susceptibility locus,

while we saw reduced power when we allowed more
markers to move into step 2 (a1 ¼ 0.10).

As expected, a population-level association between
markers and environment (pge > 0) increased the number
of markers that proceeded to step 2. However, for the range
of values we considered plausible in a genome-wide scan
(pge ¼ 0.01 or 0.05), there was not an appreciable impact on
power using the 2-step method. At more liberal values for
the proportion of markers with a population-level associa-
tion between G and E (pge ¼ 0.30, 0.95), power for the
2-step method approached that for the traditional 1-step
method. Specifically, when we assumed that 95% of the
markers were associated with the environmental factor,
power estimates for the 1- and 2-step methods were identi-
cal (29.3%). Power estimates under the full range of values
for pge we considered are shown in the Web Figure.

Across a range of interaction effect sizes (Rge ¼ exp(bge)),
our 2-step method was also more likely than the 1-step
method to detect the disease susceptibility locus according
to the ranked P-value statistics (Figure 2). Using the ordered
P values compared with a traditional significance threshold
to choose a subset of highly ranked SNPs did not depend as
much on interaction effect size to be confident that the se-
lected subset included the disease susceptibility locus. For
example, our 2-step approach resulted in the disease suscep-
tibility locus being in the top-10-ranked P values in 79% of
the 1,000 replicates with an interaction effect size of 2.5
compared with 59% when the 1-step method was used.
Power for this interaction effect size was less than 35%
for both tests (Figure 1).

Our 2-step method was more robust to changes in expo-
sure prevalence, minor allele frequency, number of markers,
and so forth, when we focused on the rank statistics (Table 2).
Under our base model settings, the disease susceptibility
locus was in the top 10 P values in 94% of the 1,000 repli-
cates using the 2-step method compared with only 79%
of the replicates when the 1-step method was used. Even
under the least ideal circumstances, with a low exposure
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Figure 1. Power for 1-step and 2-step analyses for varying levels of
interaction effect size (Rge). All other parameter settings remain con-
stant under ‘‘base’’ model specifications (M ¼ 10,000, number
of cases/controls ¼ 500/500, qA ¼ 0.2, pe ¼ 0.5, Rg ¼ 1, Re ¼ 1,
pge ¼ 0, a1 ¼ 0.05).
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prevalence, the ranked P value for the disease susceptibility
locus was still in the top 25 in 63% of replicates using the
2-step method compared with 35% when the 1-step method
was used. Under all other scenarios we examined, the
ranked P value using the 2-step method was in the top 25
for at least 85% of replicates, and the 2-step method always
outperformed the 1-step approach.

DISCUSSION

For a GWAS in a case-control sample, we have shown
that our 2-step testing approach provides a powerful alter-
native for testing G 3 E interaction relative to a traditional
1-step test. For the parameter settings we examined, the 2-step
method was always more powerful than the 1-step method.
Our method was also more robust than the traditional case-
control test to changes in allele frequency, exposure preva-
lence, and other parameters when comparing the ranked

P value for the true disease-susceptibility locus. Given its
increased power and ease of implementation, the 2-step test
is an attractive alternative for identifying G3 E interactions
in a GWAS for complex diseases.

We assumed a dichotomous environmental factor and
dominant susceptibility locus in our simulations. In practice,
the investigator may be interested in an alternative type of
environmental factor (e.g., continuous, multinomial) or ge-
netic model (e.g., additive, codominant). Both steps in our
method can naturally be extended to accommodate any pa-
rameterization of the environmental exposure or genetic
coding. The absolute power of these extensions would de-
pend on the underlying data distributions, but we would
expect similar increases in power for our 2-step approach
relative to a 1-step approach.

A typical GWAS is conducted on a large sample size to
achieve power to detect modest-sized effects at genome-
wide significance after correction for multiple testing. We
considered a scenario with only 500 cases and controls gen-
otyped on 10,000 markers for our base model. With an in-
crease in sample size, power to detect a marker involved in
a G 3 E interaction would increase for both the 1- and
2-step methods. An increase in number of markers could
increase or decrease power, depending on whether the in-
crease in linkage disequilibrium between the disease sus-
ceptibility locus and the markers offsets the penalty for
a larger number of tests. However, we would expect varia-
tions in sample size and number of markers to affect both
the 1- and 2-step approaches similarly and therefore not
affect the relative comparison of power for the 2 methods.

We simulated scenarios in which a proportion (pge) of the
available null markers were associated with the environmen-
tal factor in the population to establish that our 2-step ap-
proach preserves the desired type I error rate. It is possible
for a causal locus to influence disease risk through an in-
teraction with some environmental factor and simultaneously
to be associated with the same environmental exposure in the

Table 1. Type I Error and Power for 1-Step and 2-Step Tests for

Gene-Environment Interaction

Modela
Type I Errorb Powerc

1 Step 2 Step 1 Step 2 Step

Based 0.062 0.045 0.332 0.579

Disease susceptibility
locus allele
frequency (qA)

0.1 0.062 0.043 0.158 0.348

0.3 0.052 0.039 0.344 0.588

Exposure prevalence (pE)

0.1 0.058 0.073 0.035 0.111

0.25 0.053 0.052 0.212 0.448

Effect sizes (Rg, Re, Rge)

123 0.063 0.038 0.228 0.479

213 0.054 0.054 0.312 0.578

223 0.053 0.054 0.253 0.483

Population gene-
environment
association (pge)

0.01 0.054 0.040 0.320 0.564

0.05 0.057 0.050 0.316 0.504

0.30 0.061 0.049 0.315 0.385

0.95 0.056 0.052 0.293 0.293

No. of markers (M)

25,000 0.051 0.063 0.290 0.518

50,000 0.049 0.060 0.223 0.436

Step 1 threshold (a1)

0.01 0.065 0.049 0.350 0.698

0.1 0.051 0.048 0.330 0.500

a Variations to model specification refer to a change to a parameter

setting in the ‘‘base’’ model. All other parameters remain constant.
b All estimates of type I error have a standard error of <0.008.
c All estimates of power have a standard error of <0.016.
d M ¼ 10,000, number of cases/controls ¼ 500/500, qA ¼ 0.2, pe ¼

0.5, Rg ¼ 1, Re ¼ 1, Rge ¼ 3, pge ¼ 0, a1 ¼ 0.05.
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Figure 2. Percentage of replicates for which the P value for disease
susceptibility locus is ranked in the top k (k ¼ 10 or k ¼ 25) marker
P values for varying levels of interaction effect size (Rge). All other
parameter settings remain constant under ‘‘base’’ model specifica-
tions (M ¼ 10,000, number of cases/controls ¼ 500/500, qA ¼ 0.2,
pe ¼ 0.5, Rg ¼ 1, Re ¼ 1, pge ¼ 0, a1 ¼ 0.05).
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general population. Under this scenario, the population-level
association between the causal locus and the environmental
factor would affect the power of our screening step. For
example, a population-level G-E association at the causal
locus in the opposite direction of the G3 E interaction effect
may reduce the power of our method. On the other hand,
a positive G 3 E interaction combined with a positive G-E
association in the population would inflate the estimated G-E
association in our screening step and would likely increase
the overall power of our 2-step test.

Incorporating a screening step to improve power in ge-
netic analysis has been proposed in other contexts. For ex-
ample, Van Steen et al. (10) developed a 2-step method for
genome-wide association tests of genetic main effects using
family data. Their screening step was based on a regression
model using between-family information, and it was statis-
tically independent of the family-based association test used
in the second analysis step. Similar to their approach, our
proposed analysis begins with a potentially biased test in the

first step that is designed to efficiently screen for potentially
important SNPs and then uses an unbiased second step to
ensure an overall valid procedure. Millstein et al. (11) also
used a screening step in their Focused Interaction Testing
Framework software to identify genes involved in G 3 G
interactions in a study of many candidate loci. Although this
screening test was biased in the presence of population-level
association among genes, their second-step model ensured
that the overall Focused Interaction Testing Framework ap-
proach was unbiased. Our results, in combination with those
of Van Steen et al. and Millstein et al., demonstrate that
well-designed 2-step approaches can lead to improved
power in a wide range of genetic applications.

The additional power of our 2-step procedure comes from
exploiting independent information provided by oversam-
pling of cases relative to their prevalence in the population.
In the presence of G 3 E interaction, this oversampling of
cases induces an association between G and E in the com-
bined case-control sample. Although it would be possible to
develop an alternative 1-step test based on a likelihood that
incorporates this additional information, such a test would
not preserve the type I error in the presence of population-
level G-E association. In the GWAS context, however, we
can use the additional information derived from the over-
sampling of cases in a screening step to reduce the number
of SNPs to be tested in the second step. When the power of
the first step test is high, the chance that a true positive will
be carried to the second step is also high. At the same time,
a large number of null SNPs will be eliminated by the first-
step screen, which reduces the multiple testing burden and
results in our observed, overall gain in power to detect in-
teraction at the causal locus.

Our 2-step approach is preferable to a case-only analysis
of affected individuals, since the latter will have an inflated
type I error rate in the presence of population G-E associa-
tion. Even if a small subset of null SNPs has a population
G-E association, one would expect several thousand false-
positive results using a case-only analysis of interaction
given the overall number of SNPs being tested. On the other
hand, the type I error of our 2-step procedure is maintained
because the second-step test is unbiased and the 2 steps are
independent. Thus, even if there is a strong association in
the population between E and a specific null SNP such that
the SNP passes our first-step screen, the type I error rate for
our overall 2-step procedure will be maintained.

Kraft et al. (12) proposed a powerful 2-df test for assess-
ing genetic main effects and interactions jointly. They
showed that under a wide variety of parameter settings,
the 2-df test was often more powerful than a test of the main
effect or the traditional test for G3 E interaction. Although
it is possible that a 2-df test would be more powerful than
our 2-step testing framework, many investigators conduct-
ing a GWAS will want to begin with a full scan for genetic
main effects. After conducting such a scan, use of the 2-df
test would assess redundant information through partial re-
testing of the main effect. If a secondary goal is to detect
genes involved in G 3 E interactions, our method allows it
to be performed independently of the main-effect scan.

Several reported genome-wide association studies have
conducted an initial scan of all available genotypes for main

Table 2. Percentage of Replicates With a Ranked P Value for

Disease Susceptibility Locus in the Top 10 or Top 25 Single

Nucleotide Polymorphisms for 1-Step and 2-Step Tests for Gene-

Environment Interaction

Modela
Top 10 Top 25

1 Step 2 Step 1 Step 2 Step

Baseb 0.79 0.94 0.86 0.97

Disease susceptibility
locus allele frequency (qA)

0.1 0.57 0.85 0.68 0.91

0.3 0.78 0.93 0.86 0.95

Exposure prevalence (pE)

0.1 0.26 0.51 0.35 0.63

0.25 0.66 0.89 0.76 0.94

Effect sizes (Rg, Re, Rge)

123 0.71 0.91 0.81 0.95

213 0.76 0.93 0.84 0.96

223 0.68 0.91 0.79 0.94

Population gene-
environment
association (pge)

0.01 0.76 0.94 0.85 0.97

0.05 0.79 0.91 0.86 0.94

0.30 0.75 0.84 0.84 0.91

0.95 0.75 0.76 0.84 0.85

No. of markers (M)

25,000 0.69 0.93 0.78 0.95

50,000 0.65 0.87 0.74 0.92

Step 1 threshold (a1)

0.01 0.81 0.92 0.88 0.93

0.1 0.76 0.91 0.85 0.95

a Variations to model specification refer to a change to a parameter

setting in the ‘‘base’’ model. All other parameters remain constant.
b M ¼ 10,000, number of cases/controls ¼ 500/500, qA ¼ 0.2, pe¼

0.5, Rg ¼ 1, Re ¼ 1, Rge ¼ 3, pge ¼ 0, a1 ¼ 0.05.
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effects by ignoring heterogeneity between exposure classi-
fications (13–17). It is possible that by focusing completely
on main effects, SNPs with disease associations modified by
some environmental factor were not detected. Still, it has
been argued that focusing on G 3 E interaction is not ad-
vantageous over testing for main effects (18). However, if
there is strong evidence that an environmental factor con-
tributes to risk and possibly modifies a genetic effect, it is
potentially important to define a testing strategy that uses
independent information in a second scan across the avail-
able markers. We developed this method in order to use this
additional information to detect genetic heterogeneity
across subgroups that might otherwise be missed in a direct
main effect test. Although we focused on subgroups defined
by an environmental factor, our approach can be used to
assess heterogeneity across racial/ethnic groups, genotypes
at another locus (G 3 G interaction), or any other variable
that can be used to classify study subjects.

Our method relies on a priori knowledge of factors that
might be expected to modify the risk of genotype on disease.
For example, the Children’s Health Study, a prospective co-
hort study designed to investigate respiratory outcomes in
children in 12 communities throughout southern California,
has shown evidence to suggest that both regional air quality
and proximity to traffic contribute to risk of asthma, reduced
lung function growth, and other respiratory outcomes (19–23).
For the GWAS being conducted in this cohort, simply a scan
of the main effects that ignored the potential modification of
genetic effects by air pollutants might lead investigators to
miss genetic variants that are important determinants of com-
plex respiratory diseases.

We have shown in the context of a GWAS that utilizing
ascertainment information through a screening step of avail-
able markers can lead to substantial increases in power to
detect a gene involved in a G 3 E interaction. We further-
more showed that this 2-step approach is more robust to
changes in environmental exposure, minor allele frequency,
and so forth, than the traditional 1-step test for identifying
highly ranked SNPs. Our approach therefore has the potential
to increase the yield of a given GWAS by identifying addi-
tional, important loci that act in concert with an environmen-
tal or other factor to influence risk of a complex disease.
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APPENDIX 1

The Step-1 and Step-2 Test Statistics Are Asymptotically Uncorrelated

We assume a binary exposure E and binary genotype G, although the following result can be readily extended to multilevel
exposures and genotypes. Let us consider the 23 23 2 table for a case-control study in which, as before, D is the binary case-
control indicator:

The standard interaction G3 E odds ratio is OR2 ¼ (n11n14/n12n13)/(n01n04/n02n03), and the G3 E odds ratio pooling cases
and controls is OR1 ¼ (n11 þ n01)(n14 þ n04)/(n12 þ n02)(n13 þ n03). Log(OR1) is the numerator of a Wald test statistic for
step 1, and log(OR2) is the numerator of a Wald statistic for step 2. We show that the asymptotic covariance Cov(log(OR1),
log(OR2)) ¼ 0 by using the delta method. The delta method establishes that if a random vector Tn is asymptotically multi-
variate normal N(m,R) as n / N, then a differentiable transformation f(Tn) is asymptotically multivariate normal N(f(m),
Df(m)TR Df(m)), where Df is the matrix of first-order derivatives of f (24).

The vectorsY ¼ (n11, n12, n13, n14) and Z ¼ (n01, n02, n03, n04) of observed counts in cases and controls are independent and
have a multinomial distribution Mult(p1, p2, p3, p4, n1) and Mult(q1, q2, q3, q4, n0), respectively, where n1 is the number of
cases; n0 is the number of controls; p1, p2, p3, p4 are the cell frequencies of the 23 2G3 E table for the cases; and q1, q2, q3, q4
are the cell frequencies of the 2 3 2 G 3 E table for the controls. By the standard approximation to the multinomial
distribution, X ¼ (Y, Z) is asymptotically normal with mean m ¼ E[X] ¼ (n1 p1, n1 p2, n1 p3, n1 p4, n0 q1, n0 q2, n0 q3, n0
q4) and partitioned covariance matrix

If f(X) ¼ (log(OR2(X)), log(OR1(X))), we have

R ¼

2
66666666664

n1p1ð1� p1Þ �n1p1p2 �n1p1p3 �n1p1p4 0 0 0 0
�n1p1p2 n1p2ð1� p2Þ �n1p2p3 �n1p2p4 0 0 0 0
�n1p1p3 �n1p2p3 n1p3ð1� p3Þ �n1p3p4 0 0 0 0
�n1p1p4 �n1p2p4 �n1p2p3 n1p4ð1� p4Þ 0 0 0 0
0 0 0 0 n0q1ð1� q1Þ �n0q1q2 �n0q1q3 �n0q1q4
0 0 0 0 �n0q1q2 n0q2ð1� q2Þ �n0q2q3 �n0q2q4
0 0 0 0 �n0q1q3 �n0q2q3 n0q3ð1� q3Þ �n0q3q4
0 0 0 0 �n0q1q4 �n0q2q4 �n0q2q3 n0q4ð1� q4Þ

3
77777777775
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and by the delta method, the asymptotic covariance matrix of f(X) is

where g ¼ (n1, n0, p1, p2, p3, p4, q1, q2, q3, q4) is a rather lengthy expression involving n1, n0, p1, p2, p3, p4, q1, q2, q3, and q4.
The asymptotic joint distribution of log(OR1) and log(OR2) is then bivariate normal with covariance given by the off-diagonal
entry of the 23 2 matrix above, that is, zero. Note that this result holds for any values of the cell frequencies and thus for any
values of the underlying model parameters. This establishes the asymptotic independence of the 2 Wald statistics and, because
they are asymptotically equivalent, of the corresponding likelihood ratio test statistics that we propose.

APPENDIX 2

The 2-Step Test Preserves the Type I Error

LetM be the total number of SNP markers,M0 be the subset of SNPs that are true negatives,M1 be the subset of SNPs that
are true positives (i.e., for which there is G 3 E interaction), and M0 and M1 be the number of SNPs in M0 and M1,
respectively. Let T1k, T2k be the first- and second-step likelihood ratio statistics for SNP k, 1 � k � M, a the desired genome-
wide type I error level, and a1 � Pr(T1k > c1|H0) the step-1 type I error.

By a standard Bonferroni inequality argument, the genome-wide type I error is guaranteed to be less than a if the critical
values c1 and c2 are chosen so that PrðT1k > c1; T2k > c2Þ � a=M0 for k2 M0. Because T1k and T2k are (asymptotically)
independent (Appendix 1), it is equivalent to requiring

PrðT1k > c1Þ �
a

M03PrðT1k > c1Þ
� a

M0a1
: ðA1Þ

Now, the number of true negative SNPs tested in the second step can be written as m0 ¼
P

k2M0
IðT1k > c1Þ ¼

P
k2M0

Ik,
where Ik ¼ I(T1k > c1) and I(�) is the indicator function. This is a sum of M0 nonindependent (because of linkage disequi-
librium) Bernoulli random variables with probability of success � a1. The expected number of true negative SNPs to be tested
in step 2 is therefore E½m0� � M0a1, which is the denominator on the right-hand side of equation A1. For small a1, Var(m0) ¼
Var

�P
k2M0

Ik

�
is small (relative to M0) because Var(Ik) � a1(1 � a1), Cov(Ii, Ij) � 0 for SNP pairs in low linkage

disequilibrium with each other (the vast majority), and jCov(Ii, Ij)j� a1(1 � a1) for pairs of SNPs in linkage disequilibrium
with each other. Therefore, m0 is close to its expectation E[m0] with high probability, and the right-hand side of equation A1,
a=M0a1 � a=E½m0�, is in turn approximately a=m0. Since the total number of SNPs tested in the second step ism�m0, it suffices
to choose c2 as the 1� a=m quantile of a chi-square distributionwith 1 df to satisfy equationA1 or, equivalently, to reject the null
hypothesis if the second-step P value is smaller than a=m.

Df ðlÞTRDf ðlÞ ¼
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0
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;
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